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Abstract

The generalized integral transform technique (GITT) is employed in the solution of the boundary layer equations in simultaneously
developing laminar flow of power-law non-Newtonian fluids within a parallel plates channel. In the modeling of the related momentum
and energy equations within the range of validity of the boundary layer equations, a streamfunction formulation is employed which offers a
better computational performance than the primitive-variables formulation. Numerical results for the bulk temperature and Nusselt numbers
are established at different axial positions along the channel and for various power-law indices, and critical comparisons with previously
reported works in the literature are also performed.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The analysis of problems involving heat and fluid flow
of non-Newtonian fluids within channels has motivated
researchers in many branches of engineering, due to the
frequent occurrence of such fluids in different industrial ap-
plications. Among them can be pointed out the processing
of juices, nectars, jellies and melt cheeses in food industries,
applications with polymeric materials in the petrochemical
industry, as well as the flow of drilling muds in wells during
the drilling operation in the petroleum industry. In such ap-
plications, the determination of certain parameters plays an
important role in the design and performance improvement
of equipment where these fluids are to be processed. Among
these parameters, one of the most important is the friction
factor, which permits the determination of head losses in
channels and ducts. Another important practical quantity is
related to the calculation of heat transfer rates, namely, the
Nusselt number. The determination of these parameters can
be accomplished either experimentally or theoretically, in
the latter by solving the appropriate transport equations.

The adequate modeling of the transport phenomena for
these fluids, in order to determine the velocity and tem-
perature fields, is when applicable expressed in terms of
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the so-called boundary layer equations. Despite the great
importance in determining the heat and fluid flow character-
istics involving non-Newtonian fluids in channels, there are
only a few works in the literature dealing with the solution
of boundary layer equations in simultaneously developing
flow for these fluids, mostly following a power-law model.
At this point, we may cite the works by Yau and Tien [1],
Lin [2], Lin and Shah [3] and Etemad et al. [4], which have
employed purely numerical schemes in the solution of the
momentum and energy equations in simultaneously devel-
oping flow of power-law fluids inside channels. The excel-
lent review by Hartnett and Kostic [5] has compiled other
contributions in the literature for the flow of power-law
fluids in rectangular ducts, most of them adopting a con-
ventional finite-difference or finite-element methodology.

On the other hand, a hybrid numerical–analytical ap-
proach has been developed for partial differential equations,
the well-established generalized integral transform tech-
nique (GITT), as reviewed in Refs. [6–8]. This approach
is based in eigenfunction expansions yielding solutions
with automatic global error control and mild cost increase
in multi-dimensional situations. Due to its hybrid nature,
this scheme has been well indicated for benchmarking pur-
poses and for the validation of different numerical methods
in many classes of problems such as non-linear heat and
fluid flow problems, including the Navier–Stokes equations
and the laminar and turbulent boundary layer equations in
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Nomenclature

b half-distance between parallel plates
Dh hydraulic diameter(Dh = 4b)
K consistency index of the fluid
Mi normalization integral for the

temperature field
n power-law index
NC truncation order for the streamfunction

field
Ni normalization integral for the

streamfunction field
NM truncation order for the temperature field
Nu(x) local Nusselt number
Nuav(x) average Nusselt number
Pe Péclet number
Pra apparent Prandtl number
Pr+ apparent Prandtl number based on the

hydraulic diameter
(Pr+ = K/(ρu1−n

0 Dn−1
h α))

p∗ pressure field
p dimensionless pressure field
Rea apparent Reynolds number
Re+ apparent Reynolds number based on the

hydraulic diameter (Re+ = ρu2−n
0 Dn

h/K)
T (x, y) dimensionless temperature distribution
T ∗(x∗, y∗) temperature distribution
T̄i (x) transformed potentials for the

temperature field
Tm(x) bulk temperature
Tw prescribed wall temperature
T0 inlet temperature
u0 inlet velocity
u∗, u longitudinal velocity component,

dimensional and dimensionless,
respectively

um(x) average flow velocity
v∗, v transversal velocity component,

dimensional and dimensionless,
respectively

x∗, x longitudinal coordinate, dimensional and
dimensionless, respectively

X+
th dimensionless longitudinal coordinate

defined by Eq. (29)
X∗ dimensionless longitudinal coordinate

defined by Eq. (30)
y∗, y transversal coordinate, dimensional and

dimensionless, respectively

Greek letters
α fluid thermal diffusivity
Γ i(y) eigenfunctions of problem (18)
Γ̃i(y) normalized eigenfunctions of the

temperature field
λi eigenvalues of problem (18)

µ (uy) parameter defined by Eq. (5i)
ν kinematic viscosity
ρ fluid density
Ωi(y) eigenfunctions of problem (17)
Ω̃i(y) normalized eigenfunctions of the

streamfunction field
φ(x, y) filtered potential
φ̄i (x) transformed potentials for the

streamfunction field
ϕi eigenvalues of problem (17)
ψ(x, y) streamfunction
ψ∞(y) fully developed streamfunction

Subscripts and superscripts
i, j, k order from eigenvalue problems

integral transformed quantities

duct flows as well as convection–diffusion and eigenvalue
problems [9–17].

Within this context, the present study aims at solving the
boundary layer equations for power-law non-Newtonian
fluids in the simultaneously developing laminar flow inside
a parallel plates channel, by employing the GITT approach
and establishing reliable numerical results for the bulk tem-
perature and Nusselt numbers at the entrance region of the
channel.

In the modeling of the problem a formulation in terms
of streamfunction is adopted, which has been proved to
offer more advantages than the primitive-variables formula-
tion in the GITT solution of the boundary layer equations,
demonstrating better convergence behavior and reducing
the computational efforts in the calculation of the velocity
and temperature fields.

2. Analysis

The problem is geometrically defined by two parallel
plates, between which flows a non-Newtonian fluid obeying
a power-law model for the shear stress, according to Fig. 1.
The main hypotheses for the mathematical formulation of
this problem are given as:

– two-dimensional, incompressible and steady-state laminar
flow;

Fig. 1. Geometry and coordinate systems for simultaneously developing
duct flow.
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– physical properties are taken as constants;
– viscous dissipation and wall conjugation are neglected;
– impermeability and no-slip conditions at the channel

walls;
– the inlet velocity and temperature areu0 andT0, respec-

tively;
– the channel walls are maintained at an uniform tempera-

tureTw.

With the hypotheses above established, the appropriate
equations for the modeling of this problem, the continuity,
momentum and energy equations are now simplified. Within
the range of validity for the boundary layer hypotheses, this
system of equations in dimensionless form can be written as:

∂u

∂x
+ ∂v

∂y
= 0, 0 < y < 1, x > 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ 1

Rea

∂

∂y

[
µ(uy)

∂u

∂y

]
,

0 < y < 1, x > 0, (2)

∂p

∂y
= 0, 0 < y < 1, x > 0, (3)

u
∂T

∂x
+ v

∂T

∂y
= 1

Pe

∂2T

∂y2
, 0 < y < 1, x > 0, (4)

subject to the following inlet and boundary conditions:

u(0, y) = 1, (5a)

T (0, y) = 1, (5b)

∂u(x,0)

∂y
= 0, (5c)

v(x,0) = 0, (5d)

∂T (x,0)

∂y
= 0, (5e)

u(x,1) = 0, (5f)

v(x,1) = 0, (5g)

T (x,1) = 0, (5h)

whereµ(uy) is given by:

µ(uy) =
[(

∂u

∂y

)2
](n−1)/2

. (5i)

The dimensionless groups employed in Eqs. (1)–(5) above
are:

x = x∗

b
, (6a)

y = y∗

b
, (6b)

u = u∗

u0
, (6c)

v = v∗

u0
, (6d)

p = p∗

ρu2
0

, (6e)

T = T ∗ − Tw

T 0 − Tw
, (6f)

Rea = ρu2−n
0 bn

K
, (6g)

Pra = K

ρu1−n
0 bn−1α

, (6h)

Pe = ReaPra. (6i)

The system of Eqs. (1)–(6) represents the so-called
boundary layer equations for a power-law non-Newtonian
fluid, and its solution through the GITT approach is the
main objective of the present work. In previous works by
Machado and Cotta [11], Figueira da Silva [12] and Figueira
da Silva and Cotta [13], which dealt with the solution of
boundary layer formulation by the same methodology, it
was observed that a formulation in terms of streamfunction
presents some computational advantages when compared
with the primitive-variables formulation. Then, a stream-
function is defined as:
∂ψ

∂y
= u, (7a)

∂ψ

∂x
= −v. (7b)

Then the vorticity transport and energy equations in the
streamfunction-only formulation are written in dimension-
less form respectively as:

∂ψ

∂y

∂3ψ

∂x∂y2
− ∂ψ

∂x

∂3ψ

∂y3
= 1

Rea

∂2

∂y2

[
µ(ψyy)

∂2ψ

∂y2

]
,

0 < y < 1, x > 0, (8)

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
= 1

Pe

∂2T

∂y2
, 0 < y < 1, x > 0, (9)

and the following inlet and boundary conditions:

ψ(0, y) = y, (10a)

T (0, y) = 1, (10b)

ψ(x,0) = 0, (10c)

∂2ψ(x,0)

∂y2
= 0, (10d)

∂T (x,0)

∂y
= 0, (10e)

ψ(x,1) = 1, (10f)

∂ψ(x,1)

∂y
= 0, (10g)
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T (x,1) = 0. (10h)

The non-linear coefficient,µ(ψyy), in the diffusive oper-
ator of Eq. (8) is written from Eq. (5i) as

µ(ψyy) =
[(

∂2ψ

∂y2

)2](n−1)/2

. (11)

Following the ideas in the GITT [6,10,12,13,17], in order
to select the appropriate auxiliary eigenvalue problem, which
shall provide the basis for the eigenfunction expansion, the
original problem is made homogeneous in the boundary
conditions in they-coordinate, to be eliminated in the inte-
gral transformation process. Therefore, the streamfunction
is rewritten as:

ψ(x, y) = ψ∞(y) + φ(x, y), (12)

whereψ∞(y) represents the fully developed flow stream-
function, which for a power-law fluid may be obtained as:

ψ∞(y) = 2n + 1

n + 1
y − n

n + 1
y2n+1/n. (13)

Then, the related problem to the “filtered” potential
φ(x, y) and the temperature field after substituting Eq. (12)
into Eqs. (8)–(10), becomes[

dψ∞
dy

∂3φ

∂x∂y2
+ ∂φ

∂y

∂3φ

∂x∂y2

]
−

[
d3ψ∞
dy3

∂φ

∂x
+ ∂φ

∂x

∂3φ

∂y3

]

= 1

Rea

∂2

∂y2

[
µ(φyy, ψ

′′
∞)

(
∂2φ

∂y2
+ d2ψ∞

dy2

)]
,

0 < y < 1, x > 0, (14)

[
dψ∞
dy

+ ∂φ

∂y

]
∂T

∂x
− ∂φ

∂x

∂T

∂y
= 1

Pe

∂2T

∂y2
,

0 < y < 1, x > 0, (15)

with the following inlet and boundary conditions:

φ(0, y) = y − ψ∞(y), (16a)

T (0, y) = 1, (16b)

φ(x,0) = 0, (16c)

∂2φ(x,0)

∂y2
= 0, (16d)

∂T (x,0)

∂y
= 0, (16e)

φ(x,1) = 0, (16f)

∂φ(x,1)

∂y
= 0, (16g)

T (x,1) = 0, (16h)

where

µ(φyy, ψ
′′
∞) =

[(
∂2φ

∂y2
+ d2ψ∞

dy2

)2](n−1)/2

. (16i)

For the solution of problem (14), by using the GITT, the
appropriate eigenvalue problem is taken as:

d4Ωi(y)

dy4
= ϕ4

i Ωi(y), i = 1,2,3, . . . (17a)

Ωi(0) = 0, (17b)

d2Ωi(0)

dy2
= 0, (17c)

Ωi(1) = 0, (17d)

dΩi(1)

dy
= 0, (17e)

while for the integral transformation of the energy equation,
the eigenvalue problem is taken as:

d2Γi(y)

dy2
+ λ2

i Γi(y) = 0, i = 1,2,3, . . . (18a)

dΓi(0)

dy
= 0, (18b)

Γi(1) = 0. (18c)

Problem (17) can be solved analytically to yield the nor-
malized eigenfunction:

Ωi(y) = sin(ϕiy)

sin(ϕi)
− sinh(ϕiy)

sinh(ϕi)
, i = 1,2,3, . . . (19a)

while the eigenvaluesϕi ’s are obtained from the transcen-
dental equation:

tanh(ϕi) = tan(ϕi), i = 1,2,3, . . . (19b)

and the eigenfunctionΩi(y)’s, can be shown to enjoy the
following orthogonality property:∫ 1

0
Ω̃i(y)Ω̃j (y)dy = δij =

{
0, i 
= j

1, i = j
, (19c)

Ω̃i(y) = Ωi(y)

N
1/2
i

, (19d)

Ni = 1. (19e)

Problem (18) can also be solved analytically to yield:

Γi(y) = cos(λiy), (20a)

λi = (2i − 1)
π

2
, (20b)

∫ 1

0
Γ̃i(y)Γ̃j (y)dy = δij =

{
0, i 
= j

1, i = j
, (20c)

Γ̃i(y) = Γi(y)

M
1/2
i

, (20d)

Mi = 1
2. (20e)
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Properties above allow definition of the integral transform
pairs for the streamfunction and temperature fields, respec-
tively, as:

φ̄i (x) =
∫ 1

0
Ω̃i(y)φ(x, y)dy, transform, (21a)

φ(x, y) =
∞∑
i=1

Ω̃i(y)φ̄i(x), inverse, (21b)

and

T̄i (x) =
∫ 1

0
Γ̃i(y)T (x, y)dy, transform, (21c)

T (x, y) =
∞∑
i=1

Γ̃i(y)T̄i(x), inverse. (21d)

To obtain the resulting system of equations for the trans-
formed potentials, the partial differential equations (14)
and (15) are integral transformed through the operators∫ 1

0 Ω̃i(y)dy and
∫ 1

0 Γ̃i(y)dy, respectively, leading to the
following coupled infinite system of first order non-linear
ordinary differential equations:

∞∑
j=1

Āij
dφ̄j (x)

dx
= D̄i, i = 1,2,3, . . . (22a)

∞∑
j=1

B̄ij
dφ̄j (x)

dx
+

∞∑
j=1

C̄ij
dT̄j (x)

dx
= Ēi ,

i = 1,2,3, . . . (22b)

where

Āij = (Aij∞ − Bij∞) +
∞∑
k=1

(Cijk − Dijk)φ̄k(x), (23a)

B̄ij = −
∞∑
k=1

EijkT̄k(x), (23b)

C̄ij = Fij∞ +
∞∑
k=1

Gijkφ̄k(x), (23c)

D̄i= 1

Rea

∫ 1

0
Ω̃ ′′

i (y)µ(φyy, ψ
′′
∞)

(
∂2φ

∂y2
+ d2ψ∞

dy2

)
dy,

(23d)

Ēi = −λ2
i T̄i (x)

Pe
, (23e)

Aij∞ =
∫ 1

0
Ω̃i(y)Ω̃

′′
j (y)ψ

′
∞(y)dy, (23f)

Bij∞ =
∫ 1

0
Ω̃i(y)Ω̃j (y)ψ

′′′
∞(y)dy, (23g)

Cijk =
∫ 1

0
Ω̃i(y)Ω̃

′′
j (y)Ω̃

′
k(y)dy, (23h)

Dijk =
∫ 1

0
Ω̃i(y)Ω̃j (y)Ω̃

′′′
k (y)dy, (23i)

Eijk =
∫ 1

0
Γ̃i(y)Ω̃j (y)Γ̃

′
k(y)dy, (23j)

Fij∞ =
∫ 1

0
Γ̃i(y)Γ̃j (y)ψ

′
∞(y)dy, (23k)

Gijk =
∫ 1

0
Γ̃i(y)Γ̃j (y)Ω̃

′
k(y)dy. (23l)

Integral transformation of the inlet conditions (16a) and
(16b) yields the following initial conditions for systems (22):

φ̄i (0) =
∫ 1

0
Ω̃i(y)(y − ψ∞(y))dy = f̄i , (24a)

T̄i (0) =
∫ 1

0
Γ̃i(y)dy = ḡi . (24b)

Once systems (22) are solved for the transformed poten-
tials, as discussed bellow, the inversion formulae, Eqs. (21b)
and (21d), are recalled to provide the streamfunction and
temperature fields, as well as, through differentiation of
Eqs. (7a) and (7b), the eigenfunctions expansions for the
velocity components:

u(x, y) = ψ ′
∞(y) +

∞∑
i=1

Ω̃ ′
i (y)φ̄i(x), (25a)

v(x, y) = −
∞∑
i=1

Ω̃i(y)
dφ̄i (x)

dx
. (25b)

The local and average Nusselt numbers are defined, re-
spectively, as:

Nu(x) = − 4

Tm(x)

∂T (x,1)

∂y
, (26a)

Nuav(x) = 1

x

∫ x

0
Nu(x′)dx′, (26b)

or by integrating Eq. (26a),

Nuav(x) = −4Pe

x
ln[Tm(x)], (26c)

where

Tm(x) =
∫ 1

0 u(x, y)T (x, y)dy

um(x)
. (26d)

Through application of the inversion formulae given by
Eqs. (21b) and (21d), and by considering thatum(x) = 1,
Eq. (26d) becomes

Tm(x) =
∞∑
i=1


Hi∞ +

∞∑
j=1

Iijφ̄j (x)


 T̄i (x), (26e)
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Hi∞ =
∫ 1

0
Γ̃i(y)ψ

′
∞(y)dy, (26f)

Iij =
∫ 1

0
Γ̃i(y)Ω̃

′
j (y)dy. (26g)

Systems (22a) and (22b) constitute a non-linear initial
value problem of infinite equations, which have to be trun-
cated in sufficiently high orders, such as NC and NM,
in order to calculate the transformed potentials for the
streamfunction and temperature fields,φ̄i (x) and T̄i (x), re-
spectively. From a computational point of view, it is more
appropriate that both systems are solved simultaneously
along the entrance region. In the solution of such systems,
due to their stiff characteristics, appropriate subroutines
have to be employed, such as the subroutine DIVPAG from
the IMSL Library [18]. This subroutine provides the im-
portant feature of automatic error control over the solution
of the ordinary differential equations system, allowing the
user to establish error targets for the transformed potentials,
a priori. A straightforward way to organize systems (22),
so as to permit their simultaneous solution, is to combine
their truncated versions in only one system of ordinary
differential equations, such as:

E(Y )
dY

dx
= D(Y). (27)

In the vectorY, of the transformed potentials, which has
dimension(NC+ NM), the NC first positions are occupied
by φ̄i (i = 1,2, . . . ,NC), and the remaining positions by
T̄i (i = 1,2, . . . ,NM), the vectorD has dimension(NC +
NM), and the matrixE has dimension(NC+NM)× (NC+
NM). The system (27) is better envisioned when written in
the matrix form as:


Āij(φ̄)

0 · · · 0

...
. . .

...

0 · · · 0

B̄ij (T̄ ) C̄ij(φ̄)







dφ̄j

dx

dT̄j

dx


 =

[
D̄i(φ̄)

Ēi(T̄ )

]
. (28)

Table 1
Convergence behavior on the bulk temperature forPra = 0.72 andn = 1 along the channel length

X+
th × 103 NC = NM Refs. [12,13]

20 40 60 80 100 120

0.0434 0.98077 0.98081 0.98089 0.98095 0.98100 0.98104 0.98089
0.2600 0.95179 0.95222 0.95241 0.95251 0.95257 0.95261 0.95240
0.6080 0.92510 0.92563 0.92582 0.92591 0.92597 0.92601 0.92581
1.3000 0.88802 0.88857 0.88875 0.88884 0.88889 0.88892 0.88874
2.6000 0.83701 0.83752 0.83768 0.83776 0.83780 0.83783 0.83768
4.3400 0.78354 0.78400 0.78415 0.78422 0.78425 0.78428 0.78414
8.6800 0.67918 0.67957 0.67968 0.67974 0.67977 0.67979 0.67968

23.4000 0.43434 0.43458 0.43465 0.43469 0.43471 0.43472 0.43466
43.4000 0.23761 0.23774 0.23778 0.23780 0.23781 0.23781 0.23779
94.2000 0.051334 0.051362 0.051371 0.051375 0.051377 0.051379 0.05138

Since the transformed potentials are calculated within a
prescribed accuracy, the global errors in the streamfunction
and temperature fields are finally controlled by the trunca-
tion orders (NC and NM) for system (28), as the eigenfunc-
tion expansion, Eqs. (21b) and (21d), converge within the
requested accuracy at selected domain positions.

3. Results and discussion

The momentum equation in terms of the streamfunction
formulation and the energy equation were simultaneously
solved under controlled accuracy and, numerical results
were produced for different power-law indices and appar-
ent Prandtl numbers along the entrance of the channel.
For all computations equal truncation orders NC= NM
were adopted in the solution of system (28) through the
subroutine DIVPAG (IMSL Library [18]) with a relative
error target of 10−8. For this purpose, a computational code
was developed in FORTRAN 90 programming language
and implemented on a PENTIUM-II 400 MHz computer.
Aspects on the results of the velocity field were previously
discussed in a paper by Magno et al. [19].

Results were obtained as functions of the following di-
mensionless axial coordinatesX+

th andX∗ as defined below,
respectively,

X+
th = x∗

DhRe+Pr+ , (29)

X∗ = x∗

bRea
. (30)

For both cases, the apparent Reynolds numbers,Rea and
Re+, were taken equal to 2000 (except when indicate in the
titles of the tables), since these dimensionless axial coordi-
nates are independent of these parameters.

First, in Table 1 is illustrated the convergence behavior
on the bulk temperature forPra = 0.72 andn = 1 along the
channel length, as well as a comparison with those results
presented by Figueira da Silva [12] and Figueira da Silva and
Cotta [13], in order to validate the numerical code developed
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Table 2
Convergence behavior on the bulk temperature forPra = 50 andn = 1
along the channel length

X+
th × 103 NC = NM

20 40 60 80 100 120

0.0075 0.99554 0.99620 0.99620 0.99614 0.99609 0.99604
0.0200 0.99321 0.99344 0.99331 0.99320 0.99313 0.99308
0.0563 0.98811 0.98788 0.98768 0.98756 0.98749 0.98745
0.1190 0.98136 0.98094 0.98074 0.98063 0.98057 0.98053
0.2750 0.96851 0.96804 0.96786 0.96777 0.96771 0.96768
0.5250 0.95228 0.95184 0.95168 0.95160 0.95156 0.95153
0.9380 0.93037 0.92998 0.92985 0.92978 0.92975 0.92972
1.5600 0.90290 0.90257 0.90246 0.90240 0.90237 0.90235
3.1300 0.84697 0.84671 0.84662 0.84658 0.84656 0.84654
6.8800 0.74461 0.74442 0.74436 0.74432 0.74431 0.74429

here and to demonstrate that consistent results were com-
puted. From this table can be verified an excellent conver-
gence rate of the results and, with a truncation order within
the range of 20–40 terms in the summations, a convergence
of two digits is reached and, in the range of 100–120 terms
at least four significant digits are fully converged in the bulk
temperature. A similar analysis along the channel length is
illustrated in Table 2 for the case ofPra = 50 andn = 1.
From this table an excellent convergence rate of the results
can also be verified.

After the convergence analysis on the bulk temperature
is made, Table 3 brings comparisons of the present average
Nusselt numbers with those obtained by Figueira da Silva
[12], Figueira da Silva and Cotta [13] and Hwang and Fan
[20], as presented by Shah and London [21], for the cases

Table 3
Comparison of average Nusselt numbers forn = 1, Pra = 0.72 and 50 along the channel length

Pra = 0.72 Pra = 50

X+
th × 103 Present work Refs. [12,13] Ref. [20] X+

th × 103 Present work Refs. [12,13] Ref. [20]

0.0434 110.26 111.1 116.1 0.0075 132.23 122.3 150.2
0.0868 78.682 79.24 72.87 0.0138 101.80 96.84 108.4
0.2600 46.684 46.89 44.14 0.0200 86.852 83.68 89.93
0.4340 36.832 36.96 35.09 0.0250 78.967 76.56 80.79
0.6080 31.609 31.70 30.23 0.0563 56.087 55.24 54.95
0.9550 25.872 25.93 24.91 0.0875 46.772 46.30 45.19
1.3000 22.644 22.68 21.90 0.1190 41.309 41.00 39.77
1.7400 20.028 20.06 19.52 0.1500 37.682 37.45 36.20
2.6000 17.014 17.03 16.63 0.2750 29.865 29.76 28.73
3.4700 15.211 15.22 14.90 0.4000 26.045 25.98 25.15
4.3400 13.997 14.01 13.74 0.5250 23.657 23.61 22.91
6.0800 12.440 12.45 12.24 0.6250 22.272 22.24 21.62
8.6800 11.117 11.12 10.96 0.9380 19.421 19.40 18.92

14.800 9.6866 9.689 9.593 1.2500 17.678 17.66 17.26
23.400 8.9002 8.902 8.827 1.5600 16.467 16.46 16.10
32.100 8.5315 8.532 8.474 1.8800 15.528 15.52 15.23
43.400 8.2734 8.274 8.225 3.1300 13.306 13.30 13.11
65.100 8.0292 8.029 7.986 4.3800 12.088 12.09 11.94
94.200 7.8783 7.878 7.792 5.6300 11.295 11.29 11.17

151.90 7.7500 7.749 7.707 6.8800 10.731 10.73 10.63

of n = 1 andPra = 0.72 and 50 at various axial positions.
In both cases analyzed, a truncation order of NC= NM =
120 was employed in the summations. The slight discrep-
ancy among the present results with those in the works of
Figueira da Silva [12] and Figueira da Silva and Cotta [13],
which also utilized the GITT approach for the solution of
the same problem, can be explained by the fact that their re-
sults were calculated with a relative error target of 10−6 and
a truncation order of NC= NM = 80. The more evident
difference with those results by a finite-difference scheme
in the work by Hwang and Fan [20] may be due to the fact
that the Nusselt number calculated in Ref. [20] was obtained
from the derivative of the fluid temperature at the duct wall
that is a more difficult task for the finite differences approx-
imation with a regular mesh, specially for lower apparent
Prandtl numbers. This difficulty is alleviated in the present
methodology, since the temperature field is analytical in the
transversal direction, so that the average Nusselt number
is calculated through the direct integration of the energy
equation.

In addition, comparisons with other previous works are
made in Tables 4–6 for different power-law indices and
apparent Prandtl numbers, and as can be noted from these
tables, the excellent convergence behavior of the results
for the local Nusselt number and the good agreement with
previous ones also validate the numerical code developed
in the present work as well as indicate the consistency
of the present results. Also in Fig. 2 is shown a compar-
ison with the works of Quaresma and Macêdo [22] and
Cotta and Özisik [23] for the case ofPra → ∞, which
represents the thermally developing flow situation, and
as can be seen the results are in excellent agreement,
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Table 4
Comparison of local Nusselt numbers forn = 1, Rea = 250 andPra = 5 along the channel length

X+
th NC = NM Campos Silva et al. [15] Etemad et al. [4]

10 20 40 60 80 100

1.25× 10−4 27.03 28.10 28.18 28.14 28.11 28.10 27.75 24.72
4.38× 10−4 16.98 17.07 17.04 17.03 17.02 17.02 16.80 15.82
7.5 × 10−4 14.04 14.05 14.03 14.02 14.02 14.02 13.70 13.34
2 × 10−3 10.36 10.36 10.35 10.35 10.35 10.35 10.10 10.27
6.25× 10−3 8.150 8.148 8.147 8.147 8.146 8.146 8.20 8.15
1 × 10−2 7.728 7.728 7.727 7.727 7.727 7.727 7.79 7.72
1.25× 10−2 7.627 7.626 7.626 7.626 7.626 7.626 7.70 7.63
2.5 × 10−2 7.542 7.542 7.542 7.542 7.542 7.542 7.56 7.55
4.06× 10−2 7.541 7.541 7.541 7.541 7.541 7.541 7.54 7.54

Table 5
Comparison of local Nusselt numbers forn = 0.5, Rea = 250 andPra = 0.5 along the channel length

X+
th NC = NM Lin [2] Etemad et al. [4]

10 20 40 60 80 100

6.09× 10−4 22.24 20.76 20.47 20.42 20.41 20.41 20.71 20.97
1.102× 10−3 16.50 15.89 15.83 15.82 15.81 15.82 16.57 15.98
2.173× 10−3 12.25 12.17 12.15 12.15 12.16 12.16 12.29 12.12
4.045× 10−3 9.955 9.931 9.931 9.934 9.936 9.938 9.87 9.86
5.712× 10−3 9.099 9.088 9.090 9.093 9.094 9.095 9.05 9.03
1.0465× 10−2 8.243 8.242 8.243 8.244 8.244 8.244 8.27 8.20
2.0552× 10−2 7.992 7.991 7.991 7.991 7.990 7.990 8.00 7.97
2.6533× 10−2 7.968 7.967 7.967 7.967 7.967 7.966 7.96 7.95

once again validating the computational code developed
here.

Figs. 3 and 4 show the development of the temperature
field along the axial coordinate,X∗, for the cases ofPra = 1
and 50 and by adopting the power-law indicesn = 0.75, 1
and 3, respectively. From these figures, it is observed that
the development of the temperature profiles is more rapidly
reached for the case of apparent Prandtl numberPra = 1,
than for the case ofPra = 50. For the situation ofPra = 1,
the tendency of the temperature profile is to be fully devel-
oped in a position closer the channel inlet, such as at posi-
tions near toX∗ = 0.8. It is also verified the strong influence

Table 6
Comparison of local Nusselt numbers forn = 0.5, Rea = 250 andPra = 5 along the channel length

X+
th NC = NM Lin [2] Etemad et al. [4]

10 20 40 60 80 100

7.814× 10−4 15.11 15.04 15.01 15.01 15.01 15.01 15.21 14.83
9.989× 10−4 13.81 13.76 13.74 13.73 13.73 13.74 13.86 13.59
1.2052× 10−3 12.93 12.89 12.88 12.88 12.88 12.88 13.29 12.76
1.8029× 10−3 11.37 11.35 11.34 11.34 11.34 11.34 11.43 11.28
2.3350× 10−3 10.56 10.55 10.55 10.55 10.55 10.55 10.6 10.52
4.0173× 10−3 9.289 9.284 9.283 9.283 9.284 9.284 9.29 9.29
6.0257× 10−3 8.637 8.635 8.634 8.635 8.635 8.635 8.65 8.64
1.01102× 10−2 8.138 8.137 8.137 8.137 8.137 8.137 8.21 8.14
2.05247× 10−2 7.948 7.948 7.948 7.948 7.948 7.948 7.94 7.95

of the power-law index in the vicinities of the channel wall,
where for the case ofn = 0.75 the temperature gradients
are more pronounced than forn = 3, mainly for the case
of apparent Prandtl numberPra = 1, whereas forPra = 50
the results for temperature profiles are practically coinci-
dent in almost all positions along the channel length for all
power-law indices studied; certainly, this fact will affect the
Nusselt numbers in the entrance region.

The analysis of the behavior of the temperature field is
now reported in terms of local Nusselt numbers for three
different power-law indices, namelyn = 0.75, 1 and 3,
and for the values of apparent Prandtl numbersPra = 1
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Fig. 2. Comparison of local Nusselt numbers in thermally developing flow.

Fig. 3. Development of the temperature field along the channel length forPra = 1 andn = 0.75, 1 and 3.

Fig. 4. Development of the temperature field along the channel length forPra = 50 andn = 0.75, 1 and 3.
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Fig. 5. Local Nusselt numbers in the simultaneously developing region for the case ofPra = 1 andn = 0.75, 1 and 3.

and 50. In Fig. 5 results are presented for the local Nusselt
number in the thermal entry region for the case ofPra = 1
andn = 0.75, 1 and 3. From this figure it can be noticed the
strong influence of the power-law index in the local Nusselt
number behavior. This effect can be explained by the fact
that for power-law index greater than unity the convective
effects near the wall diminish and consequently the thermal
exchange is less intensified resulting in lower values for
the Nusselt numbers. Similar observations are verified from
Fig. 6, where local Nusselt numbers are presented for the
case ofPra = 50 andn = 0.75, 1, and 3. From these figures
it can also be noticed the nearly coincident values for the
asymptotic Nusselt numbers at different power-law indices,
n = 0.75, 1 and 3, and for fixed Prandtl numbers.

Fig. 6. Local Nusselt numbers in the simultaneously developing region for the case ofPra = 50 andn = 0.75, 1 and 3.

Finally in Fig. 7, it is shown a comparison among the
results for the local Nusselt number, in the simultaneously
developing region, forPra = 1 and 50 andn = 0.75, ob-
tained by the present methodology against those obtained
through the numerical scheme employed by Yau and Tien
[1]. A marked difference between the two sets of results is
verified in positions near the entrance region, which may
be due to the numerical scheme adopted by these authors,
that certainly affects the final results. The adopted scheme
overpredicts the results for the velocity field (Magno et al.
[19]), while underpredicting the results for the Nusselt
number forPra = 1, and in addition showing a cross-over
behavior forPra = 50, in relation to the present results, as
can be observed from Fig. 7.
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Fig. 7. Comparison of local Nusselt numbers in the simultaneously developing region forn = 0.75 andPra = 1 and 50.

4. Conclusions

The GITT was successfully employed in the solution of
the internal boundary layer equations in the simultaneously
developing laminar flow of power-law non-Newtonian flu-
ids. Benchmark results for the temperature field and Nusselt
numbers in the entrance region were then tabulated and
graphically presented for different power-law indices and
apparent Prandtl numbers. It was verified that for values
of power-law indices greater than unity, the convective ef-
fects near the wall diminish and consequently lower values
for the Nusselt numbers in the entrance region are ob-
tained, whereas for the thermally developed region nearly
coincident values for the asymptotic Nusselt numbers at
different power-law indices, and for fixed Prandtl num-
bers are computed. Comparisons with previous results in
the literature given by Yau and Tien [1] were performed
demonstrating that their results for Nusselt numbers are
markedly affected by the numerical scheme employed in
their work.
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